Callus Induction and Plant Regeneration of Rosa wichuraiana ‘Basye’s thornless’
LÜ Jing-Juan1,2,3, LI Shu-Bin2,3, ZHOU Ning-Ning2,3, JIAN Hong-Ying2,3, WANG Qi-Gang2,3, ZHANG Hao2,3, TANG Kai-Xue1,2,3
1. College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
2. Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
3. Yunnan Flower Breeding Key Lab. , Kunming 650205, China
Abstract:Methods of callus induction and plant regeneration of Rosa wichuraiana ‘Basye's thornless’ were investigated using in vitro grown young leaflets as explants. Results showed that calli were induced on MS with a high concentration of auxin (NAA), with calli exhibiting direct differentiation of adventitious buds after induction on MS medium with TDZ under dark and then light conditions. The optimal concentration of auxin (NAA) for calli induction of R. wichuraiana was 7.0 mg/L, the optimal induction period in the dark for adventitious bud differentiation was 10 d and the optimal differentiation medium was MS + 5.0 mg/L TDZ + 30 g/L glucose + 2.5 g/L GEL (pH 5.8-6.0). The highest rate of adventitious bud induction was 18.34%. We used the calli obtained by induction as transformation receptors to research GUS gene conversion. We also conducted a preliminary study on the Agrobacterium tumefaciens-mediated transformation protocol for R. wichuraiana. Results showed that the optimal conditions for transformation of R. wichuraiana was a bacterial concentration (OD600) of 0.5, infection time of 30 min, co-cultivation time of 2 d, and acetosyringone concentration of 50 μmol/L.
[1] Byrne DH,Anderson N,Brent Pemberton H. The use of Rosa wichuriana in the development of landscape roses adapted to hot humid climates[J]. Acta Hortic,2007,751:267-274.[2] Rout GR, Samantaray S, Mottlely J, Das P. Biotechnology of the rose:a review of recent progress[J]. Sci Hortic, 1999, 81:201-228.[3] Dohm A, Ludwig C, Nehring K, Debener T. Somatic embryogenesis in roses[J]. Acta Hortic, 2001a, 547:341-348.[4] Li XQ, Krasnyanski SF, Korban SS.Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa[J]. J Plant Physiol, 2002a, 159:313-319.[5] Kim CK, Chung JD, Jee SO, Oh JY. Somatic embryogenesis from in vitro grown leaf explant of Rosa hybrida L.[J]. J Plant Biotech, 2003, 5:169-172.[6] Philippe V, Marion M, Guillaume G, Aurelie C, Thomas D, Mohammed B. Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush[J]. Plant Cell Tiss Organ Cult, 2010, 100:73-81.[7] Lloyd D, Roberts AV, Short KC. The induction in vitro of adventitious shoots in Rosa[J]. Euphytica, 1998, 37:31-36[8] Burger DW, Liu L, Zary KW, Lee CI. Organogenesis and plant regeneration from immature embryos of Rosa hybrida L.[J]. Plant Cell Tiss Org, 1990, 21:147-152[9] Rosu A, Skirvin RM, Bein A, Norton MA, Kushad M, Otterbacher AG. The development of putative adventitious shoots from a chimeral thornless rose (Rosa multiflora Thumb. ex J. Murr.) in vitro[J]. J Hortic Sci, 1995, 70:901-907[10] 林毅雁.'月月粉’的再生及刺玫月季育种研究[D].北京:北京林业大学,2010.[11] 陈雪,张金柱,潘兵兵,桑成瑾,马雪,杨涛,车代弟.月季愈伤组织的诱导及植株再生[J].植物学报,2011,46 (5):569-574.[12] Dohm A, Ludwig C, Nehring K, Debener T. Somatic embryogenesis in roses[J]. Acta Hortic, 2001(547):341-346.[13] Li XQ, Krasnyanski SF, Korban SS. Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens[J]. Planta, 2002b, 40:453-459.[14] Firoozabady E, Moy Y, Courtney-Gutterson N, Robinson K. Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue[J]. Biotechnology, 1994, 12:609-613.[15] Kim CK, Chung JD, Park SH, Burrell AM, Kamo KK, Byrne DH. Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene[J]. Plant Cell Tiss Org, 2004, 78:107-111.[16] Souq F, Coutos-Thenenot P, Yean H, Delbard G, Maziere Y, Barbe JP, Boulay M. Genetic transformation of roses, 2 examples:One on morphogenesis. The other on anthocyanin biosynthetic pathway[J]. Acta Hortic, 1995, 424:381-388.[17] Li XQ, Gasic K, Cammue B, Broekaert W, Korban SS. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa) [J]. Planta, 2003, 218:226-232.[18] 高莉萍,包满珠.优化根癌农杆菌介导的月季'萨蔓莎’遗传转化系统的研究[J].北京林业大学学报,2005,27(4):60-64.[19] Yukihisa K, Masako FM. Engineering of the rose flavonoid biosynthetic pathway successfully generated Blue-Hued flowers accumulating delphinidin[J]. Plant Cell Physiol, 2007, 48(11):1589-1600.[20] 毕玲,刘凤鸾,董爱香,周晓阳,马男,赵梁军. 狗蔷薇类原球茎遗传转化体系的建立[J]. 核农学报,2012,6(2):270-274.[21] 林娅,郑玉梅,刘青林. 影响愈伤组织诱导和分化的因素[J]. 分子植物育种,2006 (4):223-227.[22] 高莉萍,包满珠. 月季'萨蔓莎’愈伤组织的诱导及植株再生[J]. 园艺学报,2005,32 (3):534-536.