[1] Strand JA, Weisner SEB. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum)[J]. J Ecol, 2001, 89(2): 166-175.
[2] 范国兰, 李伟. 穗状狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J]. 武汉植物学研究, 2005, 23(3): 267-271. Fan GL, Li W. Response of nutrient accumulation characteristics and nutrient strategy of Myriophyllum spicatum L. under different eutrophication conditions[J]. Journal of Wuhan Botanical Research, 2005, 23(3): 267-271.
[3] 钟爱文, 曹特, 张萌, 倪乐意, 谢平. 光照和黑暗条件下苦草(Vallisneria natans)和穗状狐尾藻(Myriophyllum spicatum)对铵态氮的吸收[J]. 湖泊科学, 2013, 25(2): 289-294. Zhong AW, Cao T, Zhang M, Ni LY, Xie P. Uptake of ammonium by Vallisneria natans and Myriophyllum spicatum under light and dark regimes[J]. Journal of Lake Science, 2013, 25(2): 289-294.
[4] Li GX, Zhang DD, Li QS, Chen GY. Effects of pH on isotherm modeling and cation competition for Cd(Ⅱ) and Cu(Ⅱ) biosorption on Myriophyllum spicatum from aqueous solutions[J].Environ Earth Sci, 2014, 72(11): 4237-4247.
[5] Heine S, Schmitt W, Görlitz G, Schäffer A, Preuss TG. Effects of light and temperature fluctuations on the growth of Myriophyllum spicatum in toxicity tests-a model-based analysis[J]. Environ Sci Pollut Res, 2014, 21(16): 9644-9654.
[6] 袁桂香,符辉,钟家有,倪乐意,朱天顺,李威,宋鑫. 铵胁迫对狐尾藻(Myriophyllum spicatum)和金鱼藻(Ceratophyllum demersum)生物量分配和形态的影响[J]. 湖泊科学, 2013, 25(5): 729-734. Yuan GX, Fu H, Zhong JY, Ni LY, Zhu TS, Li W, Song X. Changes in biomass allocation and morphology of Myriophyllum spicatum and Ceratophyllum demersum under the ammonium stress[J]. Journal of Lake Science, 2013, 25(5): 729-734.
[7] Heine S, Schmitt W, Schaffer A, Gorlitz G, Buresová H, Arts G, Preuss TG. Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum[J]. Chemosphere, 2015, 120: 292-298.
[8] LaRue EA, Grimm D, Thum RA. Laboratory crosses and genetic analysis of natural populations demonstrate sexual viability of invasive hybrid watermilfoils (Myriophyllum spicatum × M. sibiricum)[J]. Aquat Bot, 2013, 109: 49-53.
[9] Weyl PS, Coetzee JA. The invasion status of Myriophyllum spicatum L. in southern Africa[J]. Management, 2014,5(1): 31-37.
[10] Borrowman KR, Sager EPS, Thum RA. Distribution of biotypes and hybrids of Myriophyllum spicatum and associa-ted Euhrychiopsis lecontei in lakes of Central Ontario, Canada[J]. Lake Reserv Manage, 2014, 30(1): 94-104.
[11] Moody ML, Les DH. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations[J]. Proc Natl Acad Sci USA, 2002, 99(23): 14867-14871.
[12] Clegg MT, Gaut BS, Learn GH, Morton BR. Rates and patterns of chloroplast DNA evolution[J]. Proc Natl Acad Sci USA, 1994, 91(15): 6795-6801.
[13] 李丹丹, 郭水良, 于晶,李莎,曹同. 基于 4 个叶绿体基因识别蓑藓属 (Macromitrium)植物的可行性研究[J]. 植物科学学报, 2013, 31(1): 23-33. Li DD, Guo SL, Yu J, Li S, Cao T. Feasibility study on the identification of genus Macromitrium based on four chloroplast genes[J]. Plant Sceince Journal, 2013, 31(1): 23-33.
[14] 赵晶华, 贾倩, 金洪涛, 盛彦敏. 木兰叶绿体atpB和rbcL基因的系统进化分析[J]. 长春师范大学学报: 自然科学版, 2014, 33 (6):71-74. Zhao JH, Jia Q, Jin HT, Sheng YM. Evolution analysis of the chloroplast genes atpB and rbcL of magnolia[J]. Journal of Changchun Normal University,2014, 33 (6):71-74.
[15] 宋敏舒, 乐霁培, 孙航, 李志敏. 横断山地区海仙报春的谱系地理学研究[J]. 植物分类与资源学报, 2011, 33(1): 91-100. Song MS, Yue JP, Sun H, Li ZM. Phylogeographical study on Primula poissonii (Primulaceae) from Hengduan Mountains[J]. Plant Diversity and Resources, 2011, 33(1): 91-100.
[16] Chen JM, Du ZY, Sun SS, Gituru RW, Wang QF. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas[J]. PloS ONE, 2013, 8(4): e60948.
[17] Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation[J]. Mol Ecol, 2005, 14(11): 3513-3524.
[18] 陈家瑞. 中国植物志: 第53卷[M]. 北京: 科学出版社, 2000: 136. Chen JR. Flora Republicae Popularis Sinicae: Vol. 53[M]. Beijing: Science Press, 2000: 136.
[19] Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19: 11-15.
[20] Johnson LA, Soltis DE. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str.[J]. Syst Bot, 1994: 143-156.
[21] Taberlet P, Gielly L, Pautou G, Bouvet J. Universal pri-mers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5): 1105-1109.
[22] Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare Ⅲ[J]. Am J Bot, 2007, 94(3): 275-288.
[23] Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
[24] Rozas J, Rozas R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data[J].Comput Applic Biosci, 1995, 11(6): 621-625.
[25] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[26] Fu YX, Li WH. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709.
[27] Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2):915-925.
[28] Excoffier L, Laval G, Schneider S. Arlequin (version 3. Barrett SCH, Eckert CG, Husband BC. Evolutionary processes in aquatic plant populations[J]. Aquat Bot, 1993, 44(2): 105-145.
[33] Sculthorpe CD. Biology of Aquatic Vascular Plants[M]. London: Edward Arnold, 1967.
[34] Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment[J]. Acta Oecol, 2002, 23(3): 137-154.
[35] Chen LY, Zhao SY, Mao KS, Les DH, Wang QF, Moody ML. Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental disper-sals[J]. Mol Phylogenet Evol, 2014, 78: 87-95.
[36] Laushman RH. Population genetics of hydrophilous angiosperms[J]. Aquat Bot, 1993, 44(2): 147-158.
[37] Djebrouni M. Variabilité morphologique, caryologique et enzymatique chez quelques populations de Phragmites australis (Cav.) Trin. Ex Steud[J]. Folia Geobotanica et Phytotaxonomica, 1992, 27(1): 49-59.
[38] Hollingsworth PM, Preston CD, Gornall RJ. Genetic variability in two hydrophilous species of Potamogeton, P. pectinatus and P. filiformis (Potamogetonaceae)[J]. Plant Syst Evol, 1996, 202(3/4): 233-254.
[39] Koga K, Kadono Y, Setoguchi H. The genetic structure of populations of the vulnerable aquatic macrophyte Ranunculus nipponicus (Ranunculaceae)[J]. J Plant Res, 2007, 120(2): 167-174.
[40] Gao L, Ge S, Hong D. Low levels of genetic diversity within populations and high differentiation among populations of a wild rice, Oryza granulata Nees et Arn. ex Watt., from China[J]. Int J Plant Sci, 2000, 161(4): 691-697.
[41] Zhang ML, Fritsch PW. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Syst Evol, 2010, 288(3-4): 191-199.
[42] Li J, Fang X. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Sci Bull, 1999, 44(23): 2117-2124.
[43] Hamrick JL, Godt MJW. Allozyme diversity in plant species[M]//Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, MA: Sinauer Associates Inc.,1990:43-63.
[44] Aiken SG. Counts on Haloragaceae[J]. Taxon, 1978, 27: 519-535.
[45] Aiken SG. A conspectus of Myriophyllum (Haloragaceae) in North America[J]. Brittonia, 1981, 33(1): 57-69.
[46] Linder HP, Barker NP. Does polyploidy facilitate long-distance dispersal?[J]. Ann Bot, 2014, 113(7): 1175-1183. |