[1] Balciunas J, Grodowitz M, Cofrancesco A, Shearer J, Van Dreische R, Lyon B, Hoddle M, Reardon R. Biological control of invasive plants in the eastern United States[J]. Hydrilla, 2002:91-114.
[2] 文明, 盛哲, 林亲众. 蛋白质新资源——黑藻的研究:Ⅰ[STXFZ]. 黑藻生物学特性及营养成分的分析[J]. 湖南农业大学学报, 1994(5):457-463. Wen M, Sheng Z, Lin QZ. Study of Hydrilla verticillata(L. f.)Royle as protein resourceⅠ[STXFZ]. Analysis of the biological characters and nutrition elements of Hydrilla verticillata(L.f.)Royle[J]. Journal of Hunan Agricultural College, 1994(5):457-463.
[3] Barrat-Segretain MH, Bornette G, Hering-Vilas-Bôas A. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats[J]. Aquat Bot, 1998, 60(3):201-211.
[4] 彭东升, 孙祥钟, 王徽勤. 武汉轮叶黑藻属的细胞分类学初步研究[J]. 武汉大学学报:自然科学版, 1983(2):103-109. Peng DS, Sun XZ, Wang WQ. A preliminary study on the cyto-taxonomy of Hydrilla in Wuhan[J]. Journal of Wuhan University:Natural Science Edition, 1983(2):103-109.
[5] 施国新, 杜开和, 解凯彬,丁小余, 常福辰, 陈国祥. 汞、镉污染对黑藻叶细胞伤害的超微结构研究[J]. 植物学报, 2000, 42(4):373-378. Shi GX, Du KH, Jie KB, Ding XY, Chang FC, Chen GX. Ultrastructural study of leaf cells damaged from Hg2+ and Cd2+ pollution in Hydrilla verticillata[J]. Chinese Bulletin of Botany, 2000, 42(4):373-378.
[6] Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK. Phytochelatins and antioxidant systems respond diffe-rentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle[J]. Environ Sci Technol, 2007, 41(8):2930-6.
[7] Chen LY, Chen JM, Gituru RW, Temam TD, Wang QF. Generic phylogeny and historical biogeography of Alismata-ceae, inferred from multiple DNA sequences[J]. Mol Phylogenet Evol, 2012, 63(2):407-16.
[8] Les DH, Moody ML, Soros CL. A reappraisal of phylogenetic relationships in the monocotyledon family Hydrocharitaceae(Alismatidae)[J]. Aliso, 2006, 22:211-230.
[9] Zhu J, Yu D, Xu X. The phylogeographic structure of Hydrilla verticillata (Hydrocharitaceae) in China and its implications for the biogeographic history of this worldwide-distributed submerged macrophyte[J]. BMC Evol Biol, 2015, 15(1):1-11.
[10] Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18(22):6531-6535.
[11] 白伟宁, 张大勇. 植物亲缘地理学的研究现状与发展趋势[J]. 生命科学, 2014, 26(2):125-137. Bai WN, Zhang DY. Current status and future directions in plant phylogeography[J]. Chinese Bulletin of Life Scien-ces, 2014, (2):125-137.
[12] Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
[13] Chenna R, Sugawar H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
[14] Lewis PO, Kumar S, Tamura K. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(4):2725-2729.
[15] Taberlet P, Gielly L, Pautou G, Bouvet J. Universal pri-mers for amplification of three non-coding regions of chloroplast DNA[J]. Plant Mol Biol, 1991, 17(5):1105-1109.
[16] Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants[J]. Mol Ecol, 1995, 4(1):129-134.
[17] Mu LC, Wang L, Yao L, Hao B, Luo Q. Application of petG-trnP sequence to systematic study of Chinese Cupressus species[J]. Front Biol China, 2006, 1(4):349-352.
[18] Nakayama H, Fukushima K, Fukuda T, Yokoyama J, Kimura S. Molecular phylogeny determined using chloroplast DNA inferred a new phylogenetic relationship of Rorippa aquatic (Eaton) EJ Palmer & Steyermark (Brassicaceae)-lake cress[J]. Am J Plant Sci, 2014, 5(1):48-54.
[19] Jordan WC, Courtney MW, Neigel JE. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds (Lemna-ceae)[J]. Am J Bot, 1996, 83(4):430-439.
[20] Barkman TJ, Simpson BB. Hybrid origin and parentage of Dendrochilum acuiferum (Orchidaceae) inferred in a phylogenetic context using nuclear and plastid DNA sequence data[J]. Syst Bot, 2002, 27(2):209-220.
[21] Tao S, Crawford DJ, Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae)[J]. Am J Bot, 1997, 84(8):1120-1136.
[22] Shaw J, Lickey E, Schilling E, Small RL. Comparison of whole chloroplast genome sequences to choose nonco-ding regions for phylogenetic studies in angiosperms:the tortoise and the hareⅢ[STXFZ] [J]. Am J Bot, 2007, 94(3):275-288.
[23] Jeanson ML, Labat JN, Little DP. DNA barcoding:a new tool for palm taxonomists?[J]. Ann Bot, 2011, 108(8):1445-1451.
[24] Dong WP, Liu J, Yu J, Wang L, Zhou S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding[J]. PLoS One, 2012, 7(4):e35071.
[25] Nei M. Molecular Evolutionary Genetics[M]. New York:Columbia University Press, 1987.
[26] Sheeja G, Jyotsna S, Yadon VL. Genetic diversity of the endangered and narrow endemic Piperia yadonii (Orchidaceae) assessed with ISSR polymorphisms[J]. Am J Bot, 2009, 96(96):2022-2030.
[27] Magalhaes HM, Pinheiro LR, Silveira FA, Menezes MD, Santos JBD, Resende LV, Pasqual M. Genetic diversity of endangered populations of Butia capitata:implications for conservation[J]. Afr J Biotechnol, 2015, 14(11):888-900.
[28] Chen J, Du Z, Yuan Y, Wang QF. Phylogeography of an alpine aquatic herb Ranunculus bungei (Ranunculaceae) on the Qinghai-Tibet Plateau[J]. J Syst Evol, 2014, 52(3):313-325.
[29] Rebernig CA, Schneeweiss GM, Bardy KE, Sch nswetter P, Villaseñor JL. Multiple Pleistocene refugia and Ho-locene range expansion of an abundant southwestern American desert plant species (Melampodium leucanthum, Asteraceae)[J]. Mol Ecol, 2010, 19(16):3421-3443.
[30] Langeland KA, Sutton DL. Regrowth of Hydrilla from axillary buds[J]. J Aquat Plant Manage, 1980, 18:27-29.
[31] Andreakis N, Procaccini G, Maggs C, Kooistra W. Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity[J]. Mol Ecol, 2007, 16(11):2285-2299.
[32] Koga K, Kadono Y, Setoguchi H. Phylogeography of Ja-panese water crowfoot based on chloroplast DNA haplotypes[J]. Aquat Bot, 2008, 89(1):1-8.
[33] Chen JM, Du ZY, Sun SS, Gituru RW, Wang QF. Chloroplast DNA phylogeography reveals repeated range expansion in a widespread aquatic herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and adjacent areas[J]. PLoS One, 2013, 8(4):e60948.
[34] Wang ZW, Chen ST, Nie ZL, Zhang JW, Zhou Z, Deng T, Sun H. Climatic factors drive population divergence and demography:insights based on the phylogeography of a riparian plant species endemic to the Hengduan mountains and adjacent regions[J]. PLoS One, 2015, 10(12):e0145014.
[35] 李俊清. 植物遗传多样性保护及其分子生物学研究方法[J]. 生态学杂志, 1994, 13(6):27-33. Li JQ. Conservation of plant genetic diversity and related molecular biological techniques[J]. Chinese Jounral of Ecology, 1994, 13(6):27-33.
[36] Hamrick JL, Godt MJW. Allozyme diversity in plant species[M]//Brown AHD, Clegg MT, Kahler AL, Weir BS, eds. Plant Population Genetics, Breeding, and Genetic Resources. Sunderland:Sinauer Associates Inc, 1989:43-63.
[37] Madeira PT, Coetzee JA, Center TD, White EE, Tipping PW. The origin of Hydrilla verticillata recently discovered at a south African dam[J]. Aquat Bot, 2007, 87(2):176-180. |