[1] Coumou D, Robinson A. Historic and future increase in the global land area affected by monthly heat extremes[J]. Environ Res Lett, 2013, 8(3):6-13.
[2] Seneviratne SI, Donat MG, Mueller B, Alexander LV. No pause in the increase of hot temperature extremes[J]. Nat Clim Change, 2014, 4:161-163.
[3] Buckley LB, Huey RB. Temperature extremes:geographic patterns, recent changes, and implications for organismal vulnerabilities[J]. Global Change Biol, 2016, 22(12):3829-3842.
[4] Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress:an overview of molecular responses in photosynthesis[J]. Photosynth Res, 2008, 98(1-3):541-550.
[5] Long SP, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature[J]. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:633-662.
[6] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Ann Rev Plant Physiol, 1980, 31:491-543.
[7] Buchner O, Stoll M, Karadar M, Kranner I, Neuner G. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants[J]. Plant Cell Environ, 2015, 38(4):812-826.
[8] Demmig B, Winter K, Kruger A, Czygan FC. Photoinhibition and zeaxanthin formation in intact leaves:a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiol, 1987, 84(2):218-224.
[9] Demmig-Adams B, Adams WW 3rd. Photoprotection in an ecological context:the remarkable complexity of thermal energy dissipation[J]. New Phytol, 2006, 172(1):11-21.
[10] Demmig-Adams B, Cohu CM, Muller O, Adams WW 3rd. Modulation of photosynthetic energy conversion efficiency in nature:from seconds to seasons[J]. Photosynth Res, 2012, 113(1-3):75-88.
[11] Yin Y, Li SM, Liao WQ, Lu QT, Wen XG, Lu CM. PhotosystemⅡ photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves[J]. J Plant Physiol, 2010, 167(12):959-966.
[12] Streb R, Aubert S, Bligny R. High temperature effects on light sensitivity in the two high mountain plant species Soldanella alpina (L.) and Rannunculus glacialis (L.)[J]. Plant Biology, 2003, 5(4):432-440.
[13] Dongsansuk A, Lütz C, Neuner G. Effects of temperature and irradiance on quantum yield of PSⅡ photochemistry and xanthophyll cycle in a tropical and a temperate species[J]. Photosynthetica, 2013, 51(1):13-21.
[14] Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, et al. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria:a severe ecosystem response, coincidental with an unusually extreme weather event[J]. Mar Freshwater Res, 2017, 68(10):1816-1829.
[15] Quisthoudt K, Schmitz N, Randin CF, Dahdouh-Guebas F, Robert EMR, Koedam N. Temperature variation among mangrove latitudinal range limits worldwide[J]. Trees, 2012, 26:1919-1931.
[16] Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico[J]. Biotropica, 2008, 40(4):449-456.
[17] Cook-Patton SC, Lehmann M, Parker JD. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge[J]. Funct Ecol, 2015, 29(10):1332-1340.
[18] 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4):435-440. Liao BW, Zhang QM. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4):435-440.
[19] Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynth Res, 2004, 79(2):209-218.
[20] Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235:819-828.
[21] Haldimann P, Feller U. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Plant Cell Environ, 2004, 27(9):1169-1183.
[22] Zhang JH, Huang WD, Liu YP, Pan QH. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses[J]. J Integr Plant Biol, 2005, 47(8):959-970.
[23] Cunningham SC, Read J. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia[J]. Tree Physiol, 2006, 26(11):1435-1443.
[24] Pšidová E, ?iv?ák M, Stojni? S, Orlovi? S, Gömöry D, et al. Altitude of origin influences the responses of PSⅡ photochemistry to heat waves in European beech (Fagus sylvatica L.)[J]. Environ Exp Bot, 2018, 152:97-106.
[25] 陈鹭真, 郑文教, 杨盛昌, 王文卿, 张宜辉. 红树林耐寒性和向海性生态系列对气候变化响应的研究进展[J]. 厦门大学学报, 2017, 56(3):305-313. Chen LZ, Zheng WJ, Yang SC, Wang WQ, Zhang YH. Research progresses of mangrove cold-tolerant classes and seral classes, and their responses to climate change[J]. Journal of Xiamen University, 2017, 56(3):305-313.
[26] Offord CA. Pushed to the limit:consequences of climate change for the Araucariaceae:a relictual rain forest family[J]. Ann Bot, 2011, 108(2):347-357.
[27] 陈燕, 刘锴栋, 黎海利, 许方宏, 钟军弟, 成夏岚, 袁长春. 5种红树植物的叶片结构及其抗逆性比较[J]. 东北林业大学学报, 2014, 42(7):27-31. Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC. Leaf structures and stress resistance in five mangrove species[J]. Journal of Northeast Forestry University, 2014, 42(7):27-31.
[28] 李爱国, 屈霞, 李小科, 余筱南. 植物耐热性的研究进展[J]. 作物研究, 2007, 21(5):493-497.
[29] Magney TS, Logan BA, Reblin JS, Boelman NT, Eitel JUH, et al. Xanthophyll cycle activity in two prominent arctic shrub species[J]. Arct Antarct Alp Res, 2018, 49(2):277-289. |